Previous Question Papers

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
 B. Tech II Year I Semester Examinations, September/October 2023COMPUTER ORIENTED STATISTICAL METHODS

(Common to CSE, AIML)
Time: 3 Hours
Max. Mark75
Note: i) Question paper consists of Part A, Part B.
ii) Part A is compulsory, which carries 25 marks. In Part A, answer all questions.
iii) In Part B, Answer any one question from each unit. Each question carries 10 marksand may have a, b as sub questions.

PART - A

1.a) Define Random variable.
b) If 3 fair coins are tossed and if X is the total number of heads in the outcome. Show that X is a random variable.
[3]
c) Derive mean of Geometric distribution.
d) If the mean is 3 and variance is 4 of a random variable X, check whether X followsbinomial distribution.
[3]
e) Distinguish between parameter and statistic.
f) Explain why the larger variance is placed in the numerator of the statistic F. [3]
g) What is meant by a statistical hypothesis? [2]
h) Why are interval estimates in most cases more useful than point estimates? [3]
i) What is a stochastic matrix? When is it said to be regular? [2]
j) Discuss about classification of Markov process.

PART - B

(50 Marks)
2.a) If $f(x)$ is a density function defined by $f(x)=a e^{-|x|},-\infty<x<\infty$. Find i) a ii) variance.
b) State and prove addition theorem of probability.[5+5]

OR

3. The chances of A, B and C becoming G.M. of a company are in the ratio 4: 2: 3 . The probabilities that the bonus scheme will be introduced in the company if A, B and C become G.M. are $0.3,0.7$ and 0.8 respectively. If the bonus has been introduced, what isthe probability that A has been appointed as G.M?[10]
4.a) If X is the number appearing on a die when it is thrown, show that the Chebychev's inequality gives $P(|X-\mu|>2.5)<0.47$. While the actual probability is zero.
b) Prove that Poisson distribution is the limiting case of Binomial distribution.[5+5]

OR

5. A and B shoot independently until each has his own target. The probability of their hitting the target at each shot is $2 / 5$ and $5 / 7$ respectively. Find the probability that B will
require
more shots
than
A. [10]
6. Weights in kg. of 10 students are given as $38,40,45,53,47,43,55,48,52,49$. Can we say that variance of the distribution of weights of all students from which the above sample was taken is equal to 20 square kg . [10]

OR

7. A and B shoot independently until each has his own target. The probability of their hitting the target at each shot is $2 / 5$ and $5 / 7$ respectively. Find the probability that B will require more shots than A .
8. Weights in kg. of 10 students are given as $38,40,45,53,47,43,55,48,52,49$. Can we say that variance of the distribution of weights of all students from which the above sample was taken is equal to 20 square kg . [10]

OR
9. Show that for the Gamma distribution $(x)=\frac{e^{-x_{x}} x^{l-1}}{\Gamma(l)}<x<\infty$, the mean and variance are both equal to l.
10. A random sample of 40 geysers produced by company A have a mean life time of 647 hours of continuous use with a standard deviation of 27 hours, while a sample 40 produced by another company B have mean life time of 638 hours with standard deviation 31 hours. Does this substantiate the claim of company A that their geysers are superior to those produced by company B at 0.01 LOS. [10] OR
11.a) In a certain city 125 men in a sample of 500 were found to be smokers. In another city, the number of smokers was 375 in a random sample of 1000 . Does this indicate that there is a greater population of smokers in the second city than in the first.
b) A random sample of size 16 values from a normal population showed a mean of 41.5 inches and the sum of the squares of deviations from means is 135 sq. inches. Find the maximum error with 95% confidence. [5+5]

Code No: 153AJ

R18

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B. Tech II Year I Semester Examinations, Apri/May - 2623

COMPUTER ORIENTED STATISTICAL METHODS
(Comuman to CSE, TT, CESEE, CSE(IOT), CSEN))
Max. Marks: 75
Notef of Coetion paper consists of Part A, Part B.
ii) P 2 A A s compulsory, which carries 25 marks. In Part A , Answer all questions.
iii) In P_{2} 有, Abswer uny one question from each unit. Each question carries 10 marks and may hafe a, b as sub questions.

> PART - A
(25 Marlax)
1a) If the probability is 0 f5 thatga certain kind of measuring device will show excessive drift, what is the profabilig that the sixth mosasaring device tested will be the first to show excessive driff?
b) The probability density furyinn of a continuous random variable X is given

c) Whea is the geometnic distribution ag ageopriate model?
d) If the mean of Binomial distribution iss and yajance is $9 / 4$, obtain the value of n. [3]
c) If z is normally distribated with mean 0 and artigce 1 , evaluate $P(z \leq 1.64)$ [[2]
f) Obtain the s.d. of the sampling distributiditoforiany of 300 nandom samples each of size $\mathrm{n}=36$ are dramen from a popalation of $\mathrm{N}=900$ which is normally distributed with mean $\mu^{=22.4}$ and s.d. σ of 0.048 , if sampling is donl virntrplacement.
3) Discuss the level of significance and type of errors
h) Explain the terms mull and alternate hypotheses.
i) Define Markov chain.
j) Is the matrix $\left(\begin{array}{ccc}0 & 1 & 0 \\ 0.5 & 0.25 & 0.25\end{array}\right)$ stochastic?

PART - B
2. Suppose colored halls are distributed in three indistinguishable boxes as follow

	BoxI I	Box I I	Box III
Red	2	4	3
White	3	1	4
Blue	5	3	3

$\begin{array}{llll}\text { Blue } & 5 & 3 & 3\end{array}$
A box is selected at random from which a ball is selected at a randoms. What is the probability that the ball is colored a) red, b) bluc?
[10]
3.a) Define randonn variable.
b) Suppose a continuous function X has the probability density function

$$
f(x)= \begin{cases}2 k e^{-2}, & x>0 \\ 0 & , x \leq 0\end{cases}
$$

Comeute (i)k. (iil the distribution function for X and (iii) $P(I<X \leq 2)$.
4. A pair of fair dice is tossed. Let X denote the maximum of the mamber appearing i.e., $X(a, b)=\max (a, b)$ and Y denotes the sum of the numbers appearing ie., $Y(a, b)=a+b$. Compute the mean, variance and standard deviation of the distribution of both X and Y.
[10]

OR

Giyen that $P(X-2)=45 \cdot P(X-6)-3 \cdot P(X=4)$ for a Poisson variate X , find the roble ility that $3<X<5$.
b) A cyfanp has two cars which it hires out day by day. The mumber of demands for a car ograch dify is distributed as Poisson variable with mean 1.5. Calculate the probability that og/ day syme demand is refused.

6a) Find thomeng nd standard deviation of a normal distribution in which $\% \%$ of items are under 35 ant 89% are under 63 .
b) A random sample of sizge100 is taken from an infinite population having the mean 76 and the variance 256 . What is the probability that (i) \bar{x} will be in between 75 and 78 , (ii) \tilde{x} will be less thati 78 ?

OR
7. A popalation consists of tho fite numbers $2,3,6,8$, and 11. Consider all possible samples of size 2 that can be drywh without replacement from this population. Find (a) the mean of the population (ay the standard deviation of the population, (c) the mean of the sampling distribution of minns, and (d) the standard deviation of the sampling distribution of means.
$[2+3+2+3]$
8. The efficiency expert of a computer cognamy tested 40 engineers to estimate the average time it takes to assemble a certain eopmputy component, getting a mean of 12.73 minules and s.d. of 2.06 minutes. (a) If 3.72 .73 is used as a point estimate of the actual average time required to perform the task, deterline the maximum error with 99% confidence, (b) construct 98% confidence imervalk firthe trae average time it takes to do the job (c) with what confidence can we asserf thyt the sample mean does not differ from the trae mean by more than 30 seconds.
$[2+3+2+3]$

OR

9. The following are the average weelly losses of worker hours ofeb accidents in 10 indastrial plants before and after a certain safety programme was put into operation:

Before: 45	73	46	124	33	57	83	34	26
17								

$$
\text { After : }: \begin{array}{llllllllll}
36 & 60 & 44 & 119 & 35 & 51 & 77 & 29 & 24 & 11
\end{array}
$$

Test whether the safety programme is effective in redacing the number of aceidents if the level of significance of 0.05 ?
10. An um A contains 5 red, 3 white and 8 green marbles while um B comtains 3 red and 50 white marbles. A fair die is tossed, if 3 or 6 appears a marble is chosen from B otherwise from A. Determine the probability that
a) a red marble is chosen, b) a white marble is chosen, c) a green marble is chosen.
$[4+3+3]$
OR
11. Suppose an urn A contains 2 white marbles and urn B contains 4 red marbles. At each step of the process, a marble is selected at random from each um and the two marbles selected are interchanged. Let X_{a} denote the mamber of red marbles in urn A after in interchanges. (a) Find the transition matrix P. (b) What is the probability that there are 2 red marbles in urn A afier 3 steps.
$[5+5]$

$$
-00 \mathrm{O} 00-
$$

Code No: 153/AJ

Answer any five questions

All questions carry equal marks
1.a) Three ngerines 1,41 and III produce $40 \%, 30 \%$ and 30% of the total namber of items of a factory. The pereentgges of defective items of these machines are $4 \%, 2 \%$ and 3%. An item is sefected af random and found to be defective. Find the probability that it is from
i) Machine- 1
5) Machine-II
iii) Machine-III
b) A comtinuous Randoni varith hat the pd f $f(x)=\left\{\begin{array}{c}e^{-} \\ 0\end{array}\right.$

Determine: i) $P(0 \leq x \leq 2)$
4i) He mean
If $x \geq 0$
atherwise
iii) Variance.

2a) There are three boxes.
I contains- 10 light bulbs out of which 4 - ecerfective
Il contains- 6 light balls out of which 1 is de
III contains- 8 light bulbs out of which 3 arogitilec
A box is chosen at random and a balb is selected. (ivis defective find the probability that it is from:
i) $B a x-1$
ii) Box -II
iii) Box-II
b) A continuous Randont variable has the p.df $f(x)=\left\{\begin{array}{c}\frac{1}{2}(x+\text { b }) \\ 0\end{array}\right.$ oflerwere $x \leq 1$. Determine:
i) $P(2 \leq x \leq 4)$
i) The mean
iii) Variance.
3.a) Six cands are drawn from a pack of 52 cards. Getting a ved card is a syçentryindite probability of getting the success:
i) At least once
ii) 3 times
b) The probabilities of a Poisson variate taling the values 1 and 2 are equal. Find: i) μ ii) $P(x \geq 1)$

4a) Assume that 60% of the students passed an examination. Find the probability that among 12 .
$\begin{array}{ll}\text { i) Exactly } 8 & \text { ii) At least } 4 \text { pass the examination }\end{array}$
b) If the variance of a Poisson variate is 3 . Find the probability that: i) $P(x=0)$
ii) $\mathrm{P}(1 \leq \mathrm{S}<4)$.

5a) In a test on electrical balbs, it was found that the life of a particular make was normally distributed with an average life of 2040 hours and S.D of 40 hrs. Estimate the number of bulbs likely to burn formore than 2140 .
Two horses \mathcal{A}, B were tested according to the time (in seconds) to ruin a particular track tivh the following results.

Test whesher the two horses have the same running capacity at 95% level.
6a) If the mases of 300 stadents are normally distributed with mean 68 kgs and standand deviation 3 kg , fow many students have masses?
i) Greater than 72 kg

$$
\text { ii) Between } 65 \text { and } 71 \mathrm{kgs}
$$

b) The following table gires the number of train accidents in a country that occurred daring the various dys of the week. Find whether the accidents are uniformly distributed over the wet 1 es at the level of 0.05 .

Days	San	Mran	Tues	Wed	Thurs	Fri	Satar
No. of accidents	20	18	13	23	26	11	15

7a) A sample of 900 members has a meap 0.4 mms and S.D 2.61 cms . Is this sample has been taken from a large populatioget menh 3.25 and S.D 2.61.
b) In a city A 20% of a random sample of 900 ghool boys had a certain slight physical defect. In another city B 18.5% of a randory ayill of 1600 school boys had the same defect. Is the difference between the propprtions is significant at 0.05 level of significance.
8. The school of intemational studies for popalation foyfil out by its survey that the mobility of the population of a state to village, sown and city is in the followingroercentage.

What will be the proportion of population in village, town and city after two years? Present popalation has proportion of $0.4,0.3$ and 0.3 village, town and respectively. Find the proportions in the long run.

(Common to CSE, IT)
Time: 3 hours
Max. Marks: 75
Answer any five questions
All questions carry equal marks

1. Two dice are thrown the random variable is assigned to the sum. Write the distribution. Find the mean and variance.
2.a) If the probability distribution function of a continuous random variable is $k e^{f \mid},-\alpha \leq x \leq \alpha$. Find i) k ii) mean iii) variance.
b) A sample of 4 items is selected from 12 out of which 5 are defective. Find the expected number of defective items.
[8+7]
3.a) Eight coins are tossed. Find the probability of getting heads: i) $p(x=3)$ ii) $p(x \leq 4)$.
b) The probabilities of a Poisson variate taking the values 1 and 2 are equal. Calculate:
i) $p(x=0)$
ii) $p(x=3)$
[7+8]
4.a) Mean heights of students is 159 cms with a standard deviation of 20. Find how many students heights lie between 150 cms and 170 cms in a class of 100 students.
b) The expected number of typographical errors on a page of a certain magazine is 0.2 . What is the probability that the next page you read contains i) 0 and ii) 2 or more typographical enrors?
[7+8]
2. From the following data find whether there is any significant liking in the habit of taking soft drinks among the categories of employees.

Soft drinks	Employees		
	Clerks	Teachers	Officers
Pepsi	10	25	65
Thumsup	15	30	65
Maaza	50	60	30

6. Two horses A and B were tested according to the time (in seconds) to run a particular track with the following results. Test whether two horses have the same running capacity.

Horse A	28	30	32	33	33	29	34
Horse B	29	30	30	24	27	29	-

7.a) A random sample of 100 electric bulbs, produced by a manufacturer A showed a mean life of 1190 hrs with a standard deviation of 90 . Another sample of 75 electric bulbs produced by a manufacturer B showed a mean life of 1230 with a standard deviation of 120 hrs . Find whether there is significant difference between the mean.
b) 50 people were attacked by a disease and 30 were survived. If the survival rate is 70%, test the chain at 5% level.
8. Consider a three-state Markov chain with the transition matrix. If the initial probabilities $P_{0}=\left(\begin{array}{lll}0.2, & 0.3, & 0.5\end{array}\right)$.
$P=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 2 / 3 & 1 / 3 \\ 1 / 16 & 15 / 16 & 0\end{array}\right]$
a) Find the probabilities after two transitions.
b) Find het limiting probabilities.

